Keeping Software Engineering Education
Up-to-date with Globally Distributed
Software Development

Dr. Christelle Scharff
Pace University, USA

Dr. Olly Gotel
Pace University, USA

Prof. Vidya Kulkarni
University of Delhi, India

Prof. Longchrea Neak
Institute of Technology of Cambodia, Cambodia

http://atlantis.seidenberg.pace.edu/wiki/gsd2008
Outline

- Motivation:
 - Offshore Outsourcing
 - Issues for CS education and CS students
- Our response and vision
- Timeline:
 - 2005 – Pace (UG), ITC
 - 2006 – Pace (UG), ITC, University of Delhi
 - 2007 – Pace (UG, G), ITC, University of Delhi, small companies, NCIIA grant
 - 2008 - Pace (UG, G), bank in New York City, ITC, RUPP, University of Delhi, Mahidol University, NCIIA grant
Offshore Outsourcing
Issues for CS Education and CS Students in the US

- Decline in CS enrollment
- Entry-level jobs migrating to service-providing countries
- We can NO longer prepare students for the dotcom world:
 - What technical and “softer” skills will CS students need to employ to work and communicate as productive members of a multi-cultural software development team?
 - What roles will CS students play in a global market place?
 - What new opportunities arise?
Responding to Offshore Outsourcing

- Provide real-life Offshore Outsourcing software development experiences:
 - Provide a balanced and first-hand view of the advantages, disadvantages and potential of Offshore Outsourcing
- Understand skills students require to be productive in Offshore Outsourcing software development:
 - What roles will students play in a global market place?
 - What process and communication model works for distributed software development?
- Expose students to realities of global supply chain management:
 - How to divide up a project into component parts for different parties to work on across time zones and cultures?
- Scaling up to large projects:
 - How to deal with RFPs / competition in supply?
 - How to improve and assure the quality of distributed projects?
 - How to develop iteratively?
 - How to integrate work and deploy into a market?
First Step - 2005

Globalization

USA
Managers / Developers

CAMBODIA
Clients
Projects

- **Project 1: ITC Schedule Builder and Classroom Assignment System**
 - Generate schedules and classroom assignments / availabilities w.r.t. faculty preferences

- **Project 2: ITC Students Information System**
 - Register students (for a year)
 - View students information
 - Manage grades
 - Manage courses
 - Manage attendance
 - Provide statistical results

- **Project 3: NON-DISTRIBUTED control project - housing**
Projects

- **Project 1: ITC Library Management System**
 - Support administrators, librarians and patrons
 - Enforce the unique policies of the ITC library

- **Project 2: Cambodian Crafts On-Line Store**
 - Manage the registration of customers, the placement of orders, and the fulfilment and control tasks of service staff

- **Project 3: Cambodian On-line Restaurant**
 - Manage the registration of customers, the placement of orders, and the fulfilment and control tasks of service staff
Setting - 2007

Globalization

Software engineering process

USA
Managers
Developers

Auditors
Mentors

Entrepreneurs

RFP

CAMBODIA
Clients
Testers

INDIA
Sub-Contractors

Technology

Entrepreneurs

RFP

CAMBODIA
Clients
Testers

INDIA
Sub-Contractors

Technology

Entrepreneurs

RFP

CAMBODIA
Clients
Testers

INDIA
Sub-Contractors

Technology
NCIIA Grant 2006-2008

- “Incubating the Next Generation of Global Software Development Entrepreneurs”, National Collegiate Inventors and Innovators Alliance

Background and vision:
- Initial model for running a global software development project integrated within the curriculum of Pace and ITC
- Focus now on the outcomes of the student projects and the longer-term objectives of the learning process (i.e. fruitful business opportunities and alternative career paths for students)
- Enable students to take software products they develop beyond prototype to realize viable commercial products
- Provide insight into how to design and deliver an end-to-end project for a target market using the local knowledge and technical expertise of service-providing third-parties (quality and longevity)
Objectives for 2007

- Educate students as to the entrepreneurial opportunities in the software development field concurrently with the project.
- Give some foundational business skills required to pursue such opportunities (i.e. startups).
- Mentors - A resource to support students in learning about the ‘softer’ skills (e.g. the management, leadership, decision-making and communication skills) necessary to support teamwork and technical assistance.
- Auditors - Emphasize the ‘whole-life’ cost of commercializing software (including SQA, deployment and maintenance).
Single Software Development Project

- MultiLIB - ITC Computer Science Department Library Management System
 - Support students, librarians, professors and administrators
 - Enforce the unique library policy
 - Maintain a holding of different types of resources (e.g. books, CD-ROMs, E-books, videos, and students’ reports)
Extended Teams

- 8 Pace undergraduate students (Software Engineering course)
- 7 Pace graduate students (Software Quality Assurance course)
- 15 ITC undergraduate students (Software Engineering course)
- 6 University of Delhi graduate students (Database Design course)
- 1 assigned project
- 2 extended sub-teams (librarian / admin / professor component and student component) ended up in 1 extended team of 36 students
- Students choose their teams
Milestones

- Initialization of communications and team bonding with gifts and videos (1 week)
- Requirements (5 weeks)
- Design (4 weeks)
- Mid-semester presentations
- Implementation (3 weeks)
- Testing (1 week)
- Final presentations

Software development processes used
Roles & Responsibilities

Cambodian students – Clients and testers:

- Describe environment/problem/software
- Review and give feedback on requirements, design and testing documents
- Test the software and submit bug reports
- Report on the Pace team
- Accept or reject the software
- Compare the software developed in the US and in India
- Implement the software *
- Present their work and experience
- Demonstrate the US software
- Demonstrate their software *
- Manage a budget
Roles & Responsibilities

- Undergraduate US students – Developers and lead contractors:
 - “Capture” the requirements,
 - Propose design options
 - Manage an RFP process *
 - Handle requirements changes and integrate feedback
 - Report on the ITC/Delhi teams
 - Interact with mentors and auditors and integrate feedback *
 - Deliver software for their client
 - Describe and reflect on the software engineering process and communication protocol followed
 - Implement and test the software
 - Present their work and experience
 - Demonstrate their software
Roles & Responsibilities

- Indian students – Third-party suppliers:
 - Answer an RFP *
 - Provide US students with a database design and SQL code to be integrated into the overall system design
 - Report on the US team
 - Implement the software
Roles & Responsibilities

- Graduate US students – Mentors and auditors:
 - Mentors:
 - One graduate advisor assigned to each sub-team
 - One graduate advisor assigned to overall team integration
 - Weekly support structure
 - Coaching with techniques and practices
 - Internal pair of eyes for quality
 - Auditors:
 - Two graduates assigned to SQA in each sub-team
 - Review and report on student work (each deliverable)
 - External quality gate keepers
Communications

- How?
 - Chats (Yahoo instant messenger)
 - Emails (mailing-lists)
 - Face-to-face meetings (local teams)
 - Reflective blogs (team awareness)
 - Wiki (documents)
 - No webcams and voice
Students’ Wikis

- 3 Wikis:
 - 1 for each sub-component:
 - http://atlantis.seidenberg.pace.edu/wiki/student2007
 - http://atlantis.seidenberg.pace.edu/wiki/librarian2007
 - 1 for integration
 - http://atlantis.seidenberg.pace.edu/wiki/student2007/Pace_Integration

- Contents of the sub-component Wikis:
 - Contact information of the global sub-team and its members
 - Description of the software engineering process followed
 - Requirements, design and testing material
 - PowerPoint and video presentations

- Contents of the integration Wiki:
 - Architecture for the system
 - Database design
 - Feedback on user interface mockups
 - Deployment environment
 - Responsibilities of the team members
 - Integration and system-level testing documentation
Findings: Wikis as the Coordination Backbone of the Project

- Facilitate bonding activities:
 - Pictures, gift exchange and student’s video presentations
- Get up to speed on the project quickly
- Empower students at each location to contribute ideas
- Present the working philosophy to be followed
- Ensure transparency and shared awareness
- Improve progress monitoring
- Promote a better understanding of the software engineering process, practices and tools used in the project
- Increase productivity:
 - Easier to maintain than web pages
 - Turn-around time required to get feedback shorter
 - No claim of lost documents in email exchanges
Findings: Wiki Adoption in Different Countries

- Different levels of exposure to the Internet influence the willingness to use Wiki technology and affect the perception of its potential value
 - Cambodia – Reluctant to use Wikis despite training
 - India and US – Communication tools are more on the periphery than those tools actively used to support development
- Need of more attention to communication tooling than engineering tooling when background exposure to ‘everyday technologies’ is dissimilar
 - More in-depth study necessary
Findings: Wikis as Facilitator of Quality Assurance Activities

- **Mentors:**
 - Internal eyes for the project
 - To raise any early concerns to the teams and instructors

- **Auditors:**
 - External quality gatekeepers
 - To review the artifacts delivered and the processes used to deliver them

- **Wikis permitted instructors/mentors/auditors to:**
 - Have an up-to-date picture of the global project at any one moment in time
 - Track progress
Findings: Students as Partners

- Pace, ITC, University of Delhi students – partnering together and working on one joint project with selected team members
 - Advantages
 - Learning from each other
 - Motivation
 - Accountability
 - Pace undergraduates and graduates got to know each other
 - Pace undergraduates made friends in Cambodia and India
 - Issues
 - Coordination (e.g. Internet, deadlines, class load)
 - Loosing local friends
 - Team unity and cohesion
 - Individuals bypassing team decisions
 - Overlapping document and code versions
Findings: Students as Partners

- Pace graduate – faculty partners
 - Advantages
 - Visibility of the project facilitated by regular reports on undergraduate progress
 - Issues are detected and addressed (e.g. technical training needs, team spirit and management skills)
 - Quality of requirements, design and implementation improved
 - Less need of faculty oversight
 - Issues
 - Feedback not always timely
 - Cycle time for feedback too short
 - Audit planning not carried out
 - Constructing a sufficient audit template
Findings: Students as Mentors

- Pace graduates mentoring Pace undergraduates
 - Advantages
 - Help in goal setting
 - Provide technical training
 - Support structure for the team leaders
 - Provide rationale for process and explain decision consequences
 - Share corporate experience
 - Issues
 - Benefited mainly leaders
 - Limited contact and visibility for non leaders
 - Cycle time for feedback too short
 - Undergraduates uncomfortable being proactive
Spring 2008

- 4 countries (US, Cambodia, India, Thailand) actually implement and deploy the Spring 2007 prototype that needs refinement and iteration
- Cambodian clients sponsor 5 development teams (2 in the US, 1 in India, 1 in Cambodia and 1 in Thailand) to create the system in a competitive manner and are responsible of deploying their selected system
- US graduate students will help refine the requirements with the Cambodian client and will help each development team
- US graduate students will assess the quality of the produced artefacts and the process to develop them
- Various settings to study the impact of time, place, communication patterns and socialization (e.g., in Second Life) on requirements discovery, changes and quality
Thanks

- Students (ITC, Pace, Delhi)
- Faculty (ITC, Pace, Delhi)
- David Michael, PR Newswire, New York
- Cedric Mainguy, Asiaform, Phnom Penh
- John Fox, Homeland Energy Inc., New York
- Doug Tidwell, IBM cyber-evangelist
- Chris Nelson, IBM senior software engineer
- Gary Thompson, Sun Microsystems
- NCIIA grant 2006-2008
- Seidenberg School of CSIS