
Model or mould? A challenge for better traceability

S. J. Morris O. C. Z. Gotel
Department of Computing Department of Computer Science

City University
London, UK

Pace University
New York, USA

sjm@soi.city.ac.uk ogotel@pace.edu

Abstract

This paper examines the notion of the model as it

may be used in software engineering via the definition
of a series of progressively more complex
relationships between the modeller, the model and
what is modelled. A gradual historical development is
identified where the purpose of the model changes
from its representation of a pre-existing subject to its
action as a precedent and a definition for some
subsequent artifact that is its object. The notion of a
composite model type, or mould, combining both
purposes is made explicit. Its implications for
traceability in multi-model processes are being
investigated.

1. Introduction

Models have certainly been in use for centuries, if
not millennia [12], and very recent history by itself
provides a wide variety of examples to which appeals
can be made when attempting to explain or justify the
models now used in software engineering. An
alternative analysis, particularly of models that form
part of object oriented development processes,
suggests that such artifacts are fundamentally different
from their antecedents. They differ in ways that make
both apparently simple pedagogical tasks, such as
answering the basic question “What is a model?” and
more specific technical challenges, such as tracing
requirements through a series of models, equally
problematic. The objective of this paper is to outline a
position regarding model definition that will bridge
the ever widening gap between vernacular
understanding and technical definitions. To do this it
is necessary to define the qualities which belong to the
relationships between a model and its modeller and
between a model and its subject (or object), to the form

of its representation, to the manner of its derivation
and to its purpose. In trying to disentangle the host of
different and sometimes contradictory definitions
already available, we follow the example of
contemporary history of ideas and seek to shift
attention away from meaning and towards questions
about intentionality, agency and usage [19]. A more
systematic examination of existing usage, particular
within requirements engineering, will benefit from
these preliminary investigations and will lead to a
well-founded discussion of the problems of tracing
between specific models and of improving traceability
qualities in general.

2. Primary relationship between model and
modeller

Although it may be the case that everything is a
model [1], or is to be one in software engineering, it is
more generally true that anything can be a model.
This is the consequence of models being
representations, “representations to ourselves of what
we do, of what we want, and what we hope for ... not
simply a reflection of some state of affairs, but beyond
this, a putative mode of action, a representation of
prospective practice, or of acquired modes of action”
[20]. Representations are, in all their forms,
intentional, objects. “Nothing is a representation
except in so far as we construct or construe it as one
and it is precisely the representation we make it, or
take it to be” [20]. Thus a UML class diagram printed
on an A4 sheet of paper may be interpreted as a
model, or may be folded to function and be seen as an
airplane or represent a fictional animal. For each of
these different models to be recognised separate
qualities require recognition, including essentially the
existence of a specific modeller. The basic modelling
relationship becomes specifically and explicitly triadic

rather than diadic in the much looser sense which is
common:
1) M(S, x, y) where S takes x as a model of y [20].

Identity of modellers may often be self-evident
during software development, but subsequent
traceability may depend on explicit records of
authorship and, in a more developed view of this
primary relationship, on contribution structures [7].

The role of the modeller is also fundamental
because he or she is the one who actually tackles the
problem of complexity in all its aspects, a basic
motivation behind model making. The explicit
introduction of the modeller, as one who will sort out,
from the plethora of the available characteristics of the
object, those that are and those that are not to be
modelled requires an extension of the definition of the
modelling relationship:
2) M(S, x, y) and R(x) < R(y), where S takes x as a

model of y and R is the range or richness of
relevant properties [20].

The abstractive becomes defined as being less
profuse in whatever is characteristic and apposite. The
author of this definition, Wartofsky, notes negatively
that a model richer in properties than its object fails as
a model because a ‘negative analogy’ may be
discovered (the term defined by Hesse [9] for
properties which may be wholly inappropriate in all
senses) and positively that a successful model reveals
previously unnoticed properties of its object. The
‘richness’ test appears firmly grounded but its
implications within software engineering are yet to be
tested.

3. Concrete or abstract in representation or
content

The ‘richness’ of traditional physical models could
be defined exactly by scale. At the beginning of the
last century the physicist Ludwig Boltzmann wrote an
oft-quoted entry for ‘model’ in the famous eleventh
edition of the Encyclopaedia Britannica. His
definition: “A tangible representation, whether the
size be equal or greater or smaller, of an object which
is either in actual existence, or has to be constructed in
fact or in thought” [3] remains satisfactory for a large
class of artifacts called ‘models’. While he recognised
other extensions of the means by which “we
comprehend objects in thought and represent them in
language or writing”, he set aside anything which did
not involve “a concrete spatial analogy in three
dimensions”. Physical models conventionally
incorporate a scale, normally expressed in terms of a

numerical ratio, which acts as an exact and
uncontentious means for defining the likeness between
model and object modelled.

Such clarity evaporated with the widespread use of
the ‘model’ in a scientific context as a “selective or
abstractive duplication of some aspect of the world ...
a construction in which we organize symbols of our
experience and thought in such a way that we effect a
systematic representation of this experience, or
thought, as a means of understanding it or explaining
it to others.” [20] Such models are abstract, as
opposed to concrete, because their forms of
representation lack most spatiotemporal properties and
are inaccessible to most sense perceptions. This issue
of basic representational form or substance has
importance in ‘upstream’ software engineering
activities, particularly requirements engineering,
where documents may employ a variety of physical
and abstract media [8].

In other engineering disciplines there has been a
clear transfer from concrete to abstract models, good
examples coming from mechanical and structural
engineering. The design and testing of structures such
as electricity pylons [13] and dams was until recently
dependant upon physical models, themselves
sophisticated artifacts employing the special
components and materials needed to simulate both
size and behaviour to scale [10]. Replacement of these
physical models by abstract ‘finite element models’
with computable behaviours is well documented [22],
as are techniques for automated production from such
models, for example via laser stereolithography.

The term abstract also has connotations of
disassociation from fixed forms or arbitrariness in
expression, so it is appropriate here to mention
conceptual models. The notions of a ‘theory’, a set of
axioms, or some well established or universally
conceded principles are all what might be called
general concepts. The term ‘conceptual model’ has
now come to apply generally to any set of general
concepts derived from analysis of a particular domain
and intended for continued use in the same or an
analogous domain. In this sense they are ‘consequent
models’ that derive from their antecedent subjects and
denote their domains. The obvious paradigmatic
example is the entity-relationship model of data which
has a very simple set of concepts in its original form.
It adopts “the more natural view that the real world
consists of entities and relationships” [4]. Similarly
the object-oriented model of software systems
developed from concepts of ‘class’ and ‘object’.
Emphasis in both cases has to be on the definite article

in order to maintain the denotational character of the
definition. Conceptual models have come to play an
important role in requirements engineering and will
be studied further.

Models which are abstract in the vernacular sense
of intangible or lacking any three dimensional form
may also be abstract in a sense referring to their
derivation. According to the terms and definitions in
UML 2.0, a model element is “an element that is an
abstraction drawn from the system being modeled”
[16]. The process of abstraction may itself be
alternatively extractive or generalising, its product
being for example ‘leg’ rather than ‘limb’, or have
some more specialised meanings particularly in an
object-oriented environment. Models called abstract in
this extractive or generalising sense are also important
because they comprise an important class depending
upon a form of analogy in their derivation.

4. Derivation via analogy

Analogical models all resemble their subjects in
some aspect of their appearance, structure or
relationships. They normally belong at a level of
abstraction, in the same non-concrete sense of being
withdrawn or separated from matter, between scale
models which are iconic in the Piercian sense [18] and
bear a close resemblance to some material subject, and
mathematical models in which all components and
relationships are mathematical entities represented in
a mathematical language. It is common in software
engineering to appeal to analogy as the basis for
model derivation while at the same time
characterising such models as ‘analytic’ on the basis
of their purpose. Two activities may be involved, the
derivation of likeness by abstracting or generalising
particular characteristics (what one might call
‘abstracted analogy’) or alternatively the identification
of analogy referring to some wholly independent entity
or previously unrelated phenomenon, often as a result
of what may appear to be an arbitrary choice (what
one might call ‘homomorphic analogy’). Abstracted
analogy has been the basis for much modelling in
software engineering whereas homomorphic analogy
has been the basis of many scientific models, an often
cited example being billiard balls in random motion as
a model of gas.

Although analogy is often claimed as the basis for
derivation of models in software engineering, its
limitations go unnoticed. Analogy is not transitive (If
a is analagous to b and b is analagous to c, then a is
not analagous to c) [9] with implications for any chain

of models based on an analogical relationship with
what is being modelled. There is also no consistent
level of ‘metaphysical commitment’ [20] or belief in
the applicability of particular analogies, which may be
as different as an ‘ad hoc’ similarity and an assertion
of archetypal relationship based on first principles [2].
In addition homomorphic analogy is subject to the
strong variability of cultural association and
understanding.

5. Models as interpretations

Given its disassociation from any purely analytical
approaches, it is not surprising that the important
alternative definition of model from logic has been
rejected as unsuitable for software engineering and
particularly for requirements engineering [11]. The
duality of logicians that associates ‘model’ with
‘theory’ is significant because the modelling
relationship which it embodies has widespread, if
sometimes vague, use. Inverting the ordinary view of
models as abstractive representations, logicians speak
of ‘embodiments’ or ‘interpretations’ of some
axiomatized formal system, designated a ‘theory’,
where there is an isomorphic relationship between its
structure and that of its interpretation, designated a
‘model’. The usefulness of this model, in the context
of scientific enquiry, lies in the fact that “postulates of
theory make existential claims, but the model serves
merely to channel these to some confrontation with
experimentally testable consequences” [20].

In the world of software engineering this definition
of a model, embodying rather than abstracting, is that
taken, at least in part, by all object oriented
approaches, which take as their premises the existence
of classes and objects and other principles. Likewise
definition of the UML may be viewed as a complex set
of axiomatic statements to be used as the basis for the
interpretation of any particular domain and thus the
creation of a model of it. Any appeal to an analogical
basis relationship between a UML model and its
subject (or object) is further undermined by definition
of a model as ‘an instance of a meta-model’ [15]
concomitant upon the model conforming to the
principles set out in its meta-language. A full analysis
of multi-layered approaches to programming going
back to Dykstra [5] is outside the scope of current
work, but it does require some discussion.

6. Relationships of denotation or
exemplification

In order to clarify the effect of integrating models
into a layered hierarchy, such as that to which the
UML belongs, it is necessary to distinguish between
denotation and exemplification. One basic type of
model denotes, or has as an instance, what it models,
for example the ‘ship model’ traditionally constructed
in the greatest detail to show the finished vessel, or the
‘mathematical model’ expressed as a formula in a
mathematical language that applies to a state or object
modelled. In the same manner an ‘architectural
model’ denotes a building or buildings. Its purpose is
essentially communicative, to provide a preliminary
view of what is to be built once a detailed design has
reached or is nearing completion. After actual
construction the model provides a record of the design,
perhaps not as finally realised, but during building it
has no primary function in determining what actually
rises from the ground. The model derives directly from
architectural drawings, which themselves follow
conventions sufficiently strict [6] for them to act in the
same capacity as a musical ‘score’ and allowing
multiple ‘performances’ of the same ‘work’. The
drawings act as the essential antecedent to both
building and model, although only the drawings also
act as the essential precedent that dictates the
consequent form and function of what is subsequently
constructed.
(3) D(x,y) Model x denotes y or has an instance y.

Models in software engineering serve, or attempt to
serve, the same denotational function as architectural
drawings. Some however serve the function of
exemplification. In the alternative basic type the roles
are reversed; the model is an example, or an instance,
of what it models [6], for example a ‘fashion model’
exemplifies the physical characteristics that the
clothes designer hopes all wearers will have, or a
‘compliant universe’ is the ‘model’ of a set of axioms.
(4) E(x,v) Model x is an instance v; x is an exemplar

of v and x complies with Rr(v) where Rr(v) are the
rules embodying v.

There is a common, but not binding, association
between models that denote and models that are
analytic and also between models that exemplify and
models that are telic.

7. Analytic or telic purpose

Although all models may be analytic in some sense
related to purpose or derivation, and all models are

created with some end use in view, a distinction
between specifically analytic and telic purposes is
significant. The role of analytic models, those made as
an aid to practical or theoretical understanding of a
particular domain or artifact, have been widely studied
and they have played a fundamental role in upstream
software engineering processes. The role of telic
models, those created specifically with an expectation
of action and with some particular end in view, has
been little studied because alternative and long
developed professional conventions have been the
means of representation.

Most ‘concrete’ engineering models have been
quasi-telic because of their subsidiary but specific role
in testing. What are the characteristics of the airflow
over a wing? At what wind speed will an electricity
pylon fall? What strength of earthquake will a dam
withstand? These are questions all once answered by
physical models and now replaced by representation as
flow algorithms or matrices of forces in ‘finite element
models’. Architectural models (other than ones that
are essentially initial ‘sketches’) are likewise a by-
product of the design process, which play an important
communicative role, rather than an essential
intermediate product in building design and
construction.

Telic models which only exemplify (or ‘are
instances of’) open the way for models that are
fabrications using solely predefined concepts. They
form the basis for multilayer language definitions and
the foundation for the idea of a ‘model’ is ‘an instance
of a meta-model’ and consequently for model driven
architectures. The MDA specification advocates, at
least in its glossary, the most extreme version of a telic
definition of a model as something built with a
specific purpose or end in view : "a formal
specification of the function, structure and/or behavior
of an application or system" [14]. Without any of the
important connotations of exemplification the telic
model is the prescriptive as opposed to descriptive
model [21], or ‘TO-BE’ rather than ‘AS-IS’ model
[17], these pairings both being examples from studies
outside the object-oriented context.

8. Consequent of antecedent or precedent
for consequent

There is also a common, but not binding,
association between analytic models and consequent
models of some antecedent subject and also between
telic models and precedent models for some
consequent object which comes subsequently.

Extending the formulae above and using cM for
consequent model and pM for precedent model:
(5) cM(S, x, y) and D(x,y) and Rp(x) < Rp(y)
 where:
 - Rp is the range or richness of relevant

properties
 - S takes x as an ‘consequent model of’ y
 e.g. x/y: sketched data flow diagram / observed

office activity, or architectural model / the Tower
of London.

(6) pM(S, x, y) and D(x,y) and Rp(x) < Rp(y)
 where:
 - Rp is the range or richness of relevant

properties
 - S takes x as an ‘precedent model of’ y
 e.g. x/v: sculptor’s maquette / a sculpture, or

‘keep fit’ video / someone’s exercise routine.
Precedent models need not in general comply with

any standard set of rules or axioms so compliance with
Rr(v) is not demanded.

9. Model, cast or mould

With the advent of multi-model processes of
development it is important to distinguish clearly
between the traditional model, one which follows
some antecedent and pre-existing artifact, design or
domain (its subject), and its partner, the more recent
model which itself defines and acts as the predecessor
to and precedent for some consequent artifact (its
object). To reuse a term from physical processes, this
second type acts as a mould (Am. mold), any shape
containing an internal void which, when filled, forms
a ‘cast’.

This distinction between these two types was
implicit in the earlier definitions which separated (as
mentioned above) descriptive and prescriptive models.
However multi-layered model hierarchies require that
the two types should be newly made explicit in a
composite form. Recalling the physical ‘cast’, this can
itself, in its own turn, act as the ‘model’ for another
‘mould’, as it does in ‘lost wax’, the traditional multi-
stage process for metal casting.

Any form of software engineering model with both
object and subject requires an explicit definition of a
complete and composite ‘mould’ (mM) relationship.
Much confusion may arise because such a ‘mould’ in
its making is an instance, but in its use has an
instance. This is particularly relevant for notations
that are conventionally employed both for consequent
and precedent models. Explicit transformations
between representations for the consequent and the

precedent remain a fundamental issue in requirements
engineering. Unless the model relationships are
explicit the essential transformations will remain
uncertain.
(7) mM(S, v, x, y)
 and D(x,y) and E(x,v) and Rp(x) < Rp(y) and x

complies with Rr(v)
 where:
 - Rp is the range or richness of relevant

properties
 - Rr(v) are the rules embodying v
 which may be wholly or partially defined
 - S takes x either as a ‘model of’ both v and of y
 or as a ‘mould of’ v (or ‘from v) and y (of ‘for y’)
 e.g. v/x/y: UML syntax and semantics / a UML

class diagram / segment of object code.
The problem of switching from consequent to

precedent model, from model to mould is implicit in
all definitions which attempt to embrace both a system
and the domain of which it will form part, for example
the alternative definition of model provided in the
body of the text of the OMG’s MDA guide: "a
description or specification of that system and its
environment for some certain purpose. A model is
often presented as a combination of drawings and text.
The text may be in a modeling language or in a
natural language" [14]. The particular point at which
the switch takes place and the transformations
involved will be a crucial traceability determinant.

10. Conclusions

The sense in which abstract concepts or axioms
dictate the form and content of models marked a major
shift away from traditional and vernacular ideas of a
physical model. Our investigations suggest that recent
approaches to modelling in software engineering have
been characterized by a further extension of basic
concepts in three ways: a reorientation towards the
telic and intention to construct, a contraction of the
possible domain for analogy, and a merger of
previously separate analogic and metamathematical
approaches via the conventionalised form of
abstraction used in metamodels.

We conclude that a new type of composite model,
or mould, requires recognition, both to assist
understanding and to facilitate the tracing of elements
through successions of models. Examination of the
explicit relationships between models, modellers and
what is modelled will be the basis for further work in
the context of current requirements engineering
research and practice. We hope that this will lead to a

proper understanding of how traceability properties
may be identified within, or integrated into, multi-
model processes.

11. Acknowledgements

The authors are grateful to the reviewers for their
helpful comments.

12. References

[1] Bézivin, J. On the unification power of models. Software
and System Modeling. Vol.4, 2005, p.171.

[2] Black, M. Models and Metaphors. Studies in Language
and Philosophy. Cornell: Cornell UP, 1962, p.24.

[3] Boltzmann, L. Model. Encyclopaedia Britannica (11th
Ed.). Cambridge: CUP, 1910-11, pp.638-640.

[4] Chen, P.P.-S. The entity relationship model - Toward a
unified view of data. ACM Transactions on Database
Systems, Vol.1, No.1, March 1976, p.9.

[5] Dahl, O.-J., Dykstra, E.W. and Hoare, C.A.R. Structured
Programming. A.P.I.C. Studies in Data Processing No.8.
London: Academic Press, 1972.

[6] Goodman, N. Languages of Art. An Approach to a
Theory of Symbols. Indianapolis: Hackett, 1976, pp.218-219
and p.171.

[7] Gotel, O.C.Z. and Finkelstein A.C.W. Contribution
Structures, In Proceedings of the Second IEEE International
Symposium on Requirements Engineering (RE’95). IEEE
Computer Society Press, York, UK, March 27-29, 1995,
pp.100-107.

[8] Gotel, O.C.Z. and Morris, S.J. Crafting the
Requirements Record with the Informed Use of Media. In
Proceedings of the First International Workshop on
Multimedia Requirements Engineering (MeRE'06). IEEE,
September 2006.

[9] Hesse, M.B. Models and Analogues in Science. Notre
Dame, IN: Univ. of Notre Dame Press, 1966, p.8 and p.67.

[10] Hossdorf, H. Model Analysis of Structures. New York:
Von Nostrand Reihold, 1974.

[11] Jackson, M. Software Requirements and Specification:
A Lexicon of Practice, Principles and Prejudices.
Wokingham: Wiley and ACM, 1995, p.121.

[12] Jones, D. Model boats from the tomb of Tut’ankhamun.
Oxford: Griffith Institute, 1990.

[13] Martinez, D.R. and Miller, A.K. (Eds) Combined
Experimental Analytical Modeling of Dynamic Structural
Systems, American Society of Mechanical Engineers, 1985,
pp.50-51.

[14] OMG, MDA Guide Version 1.0.1, June 2003, p.A-2
and p.2-2.

[15] OMG Unified Modeling Language v1.5. OMG, 2003
p.2-5.

[16] OMG Unified Modeling Language (UML)
Specification: Infrastructure Version 2.0. December 2003,
p.11.

[17] Patel, N.V. Healthcare modelling through role activity
diagrams for process-based information systems
development. Requirements Engineering, Vol.5, No.2, 2000,
p.85.

[18] Pierce, C.S. Collected Papers of Charles Sanders
Pierce, Vol.II. Cambridge,MA: Harvard University Press,
1934.

[19] Skinner, Q. Visions of Politics. Volume 1: Regarding
Method. Cambridge, CUP, 2002, p.2.

[20] Wartofsky, M.W. Models, Representations and the
Scientific Understanding. Boston Studies in the Philosophy
of Science Vol XLVIII. Dordrecht: Reidel, 1979, p.xv, p.xxi,
p.6, p.8, p.xv, p.28 and p.31.

[21] Wieringa, R.J. Requirements Engineering Frameworks
for Understanding. New York: Wiley, 1996, p.75.

[22] Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. The
Finite Element Method: Its Basis and Fundamentals. 6th ed.
Amsterdam; London: Elsevier Butterworth-Heinemann,
2005.

