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Abstract 

 
This paper examines the notion of the model as it 

may be used in software engineering via the definition 
of a series of progressively more complex 
relationships between the modeller, the model and 
what is modelled. A gradual historical development is 
identified where the purpose of the model changes 
from its representation of a pre-existing subject to its 
action as a precedent and a definition for some 
subsequent artifact that is its object. The notion of a 
composite model type, or mould, combining both 
purposes is made explicit. Its implications for 
traceability in multi-model processes are being 
investigated. 
 
1. Introduction 
 

Models have certainly been in use for centuries, if 
not millennia [12], and very recent history by itself 
provides a wide variety of examples to which appeals 
can be made when attempting to explain or justify the 
models now used in software engineering. An 
alternative analysis, particularly of models that form 
part of object oriented development processes, 
suggests that such artifacts are fundamentally different 
from their antecedents. They differ in ways that make 
both apparently simple pedagogical tasks, such as 
answering the basic question “What is a model?” and 
more specific technical challenges, such as tracing 
requirements through a series of models, equally 
problematic. The objective of this paper is to outline a 
position regarding model definition that will bridge 
the ever widening gap between vernacular 
understanding and technical definitions. To do this it 
is necessary to define the qualities which belong to the 
relationships between a model and its modeller and 
between a model and its subject (or object), to the form 

of its representation, to the manner of its derivation 
and to its purpose. In trying to disentangle the host of 
different and sometimes contradictory definitions 
already available, we follow the example of 
contemporary history of ideas and seek to shift 
attention away from meaning and towards questions 
about intentionality, agency and usage [19]. A more 
systematic examination of existing usage, particular 
within requirements engineering, will benefit from 
these preliminary investigations and will lead to a 
well-founded discussion of the problems of tracing 
between specific models and of improving traceability 
qualities in general. 
 
2. Primary relationship between model and 
modeller 
 

Although it may be the case that everything is a 
model [1], or is to be one in software engineering, it is 
more generally true that anything can be a model. 
This is the consequence of models being 
representations, “representations to ourselves of what 
we do, of what we want, and what we hope for ... not 
simply a reflection of some state of affairs, but beyond 
this, a putative mode of action, a representation of 
prospective practice, or of acquired modes of action” 
[20]. Representations are, in all their forms, 
intentional, objects. “Nothing is a representation 
except in so far as we construct or  construe it as one 
and it is precisely the representation we make it, or 
take it to be” [20]. Thus a UML class diagram printed 
on an A4 sheet of paper may be interpreted as a 
model, or may be folded to function and be seen as an 
airplane or represent a fictional animal. For each of 
these different models to be recognised separate 
qualities require recognition, including essentially the 
existence of a specific modeller. The basic modelling 
relationship becomes specifically and explicitly triadic 



rather than diadic in the much looser sense which is 
common:  
1) M(S, x, y) where S takes x as a model of y [20]. 

Identity of modellers may often be self-evident 
during software development, but subsequent 
traceability may depend on explicit records of 
authorship and, in a more developed view of this 
primary relationship, on contribution structures [7]. 

The role of the modeller is also fundamental 
because he or she is the one who actually tackles the 
problem of complexity in all its aspects, a basic 
motivation behind model making. The explicit 
introduction of the modeller, as one who will sort out, 
from the plethora of the available characteristics of the 
object, those that are and those that are not to be 
modelled  requires an extension of the definition of the 
modelling relationship:  
2) M(S, x, y) and R(x) < R(y), where S takes x as a 

model of y and R is the range or richness of 
relevant properties [20]. 

The abstractive becomes defined as being less 
profuse in whatever is characteristic and apposite. The 
author of this definition, Wartofsky, notes negatively 
that a model richer in properties than its object fails as 
a model because a ‘negative analogy’ may be 
discovered (the term defined by Hesse [9] for 
properties which may be wholly inappropriate in all 
senses) and positively that a successful model reveals 
previously unnoticed properties of its object. The 
‘richness’ test appears firmly grounded but its 
implications within software engineering are yet to be 
tested. 
 
3. Concrete or abstract in representation or 
content 
 

The ‘richness’ of traditional physical models could 
be defined exactly by scale. At the beginning of the 
last century the physicist Ludwig Boltzmann wrote an 
oft-quoted entry for ‘model’ in the famous eleventh 
edition of the Encyclopaedia Britannica. His 
definition: “A tangible representation, whether the 
size be equal or greater or smaller, of an object which 
is either in actual existence, or has to be constructed in 
fact or in thought” [3] remains satisfactory for a large 
class of artifacts called ‘models’. While he recognised 
other extensions of the means by which “we 
comprehend objects in thought and represent them in 
language or writing”, he set aside anything which did 
not involve “a concrete spatial analogy in three 
dimensions”. Physical models conventionally 
incorporate a scale, normally expressed in terms of a 

numerical ratio, which acts as an exact and 
uncontentious means for defining the likeness between 
model and object modelled. 

Such clarity evaporated with the widespread use of 
the ‘model’ in a scientific context as a “selective or 
abstractive duplication of some aspect of the world ... 
a construction in which we organize symbols of our 
experience and thought in such a way that we effect a 
systematic representation of this experience, or 
thought, as a means of understanding it or explaining 
it to others.” [20] Such models are abstract, as 
opposed to concrete, because their forms of 
representation lack most spatiotemporal properties and 
are inaccessible to most sense perceptions. This issue 
of basic representational form or substance has 
importance in ‘upstream’ software engineering 
activities, particularly requirements engineering, 
where documents may employ a variety of physical 
and abstract media [8]. 

In other engineering disciplines there has been a 
clear transfer from concrete to abstract models, good 
examples coming from mechanical and structural 
engineering. The design and testing of structures such 
as electricity pylons [13] and dams was until recently 
dependant upon physical models, themselves 
sophisticated artifacts employing the special 
components and materials needed to simulate both 
size and behaviour to scale [10]. Replacement of these 
physical models by abstract ‘finite element models’ 
with computable behaviours is well documented [22], 
as are techniques for automated production from such 
models, for example via laser stereolithography. 

The term abstract also has connotations of 
disassociation from fixed forms or arbitrariness in 
expression, so it is appropriate here to mention 
conceptual models. The notions of a ‘theory’, a set of 
axioms, or some well established or universally 
conceded principles are all what might be called 
general concepts. The term ‘conceptual model’ has 
now come to apply generally to any set of general 
concepts derived from analysis of a particular domain 
and intended for continued use in the same or an 
analogous domain. In this sense they are ‘consequent 
models’ that derive from their antecedent subjects and 
denote their domains. The obvious paradigmatic 
example is the entity-relationship model of data which 
has a very simple set of concepts in its original form. 
It adopts “the more natural view that the real world 
consists of entities and relationships” [4]. Similarly 
the object-oriented model of software systems 
developed from concepts of ‘class’ and ‘object’. 
Emphasis in both cases has to be on the definite article 



in order to maintain the denotational character of the 
definition. Conceptual models have come to play an 
important role in requirements engineering and will 
be studied further. 

Models which are abstract in the vernacular sense 
of intangible or lacking any three dimensional form 
may also be abstract in a sense referring to their 
derivation. According to the terms and definitions in 
UML 2.0, a model element is “an element that is an 
abstraction drawn from the system being modeled” 
[16]. The process of abstraction may itself be 
alternatively extractive or generalising, its product 
being for example ‘leg’ rather than ‘limb’, or have 
some more specialised meanings particularly in an 
object-oriented environment. Models called abstract in 
this extractive or generalising sense are also important 
because they comprise an important class depending 
upon a form of analogy in their derivation.  
 
4. Derivation via analogy 
 

Analogical models all resemble their subjects in 
some aspect of their appearance, structure or 
relationships. They normally belong at a level of 
abstraction, in the same non-concrete sense of being 
withdrawn or separated from matter, between scale 
models which are iconic in the Piercian sense [18] and 
bear a close resemblance to some material subject, and 
mathematical models in which all components and 
relationships are mathematical entities represented in 
a mathematical language. It is common in software 
engineering to appeal to analogy as the basis for 
model derivation while at the same time 
characterising such models as ‘analytic’ on the basis 
of their purpose. Two activities may be involved, the 
derivation of likeness by abstracting or generalising 
particular characteristics (what one might call 
‘abstracted analogy’) or alternatively the identification 
of analogy referring to some wholly independent entity 
or previously unrelated phenomenon, often as a result 
of what may appear to be an arbitrary choice (what 
one might call ‘homomorphic analogy’). Abstracted 
analogy has been the basis for much modelling in 
software engineering whereas homomorphic analogy 
has been the basis of many scientific models, an often 
cited example being billiard balls in random motion as 
a model of gas. 

Although analogy is often claimed as the basis for 
derivation of models in software engineering, its 
limitations go unnoticed. Analogy is not transitive (If 
a is analagous to b and b is analagous to c, then a is 
not analagous to c) [9] with implications for any chain 

of models based on an analogical relationship with 
what is being modelled. There is also no consistent 
level of ‘metaphysical commitment’ [20] or belief in 
the applicability of particular analogies, which may be 
as different as an ‘ad hoc’ similarity and an assertion 
of archetypal relationship based on first principles [2]. 
In addition homomorphic analogy is subject to the 
strong variability of cultural association and 
understanding. 
 
5. Models as interpretations 
 

Given its disassociation from any purely analytical 
approaches, it is not surprising that the important 
alternative definition of model from logic has been 
rejected as unsuitable for software engineering and 
particularly for requirements engineering [11]. The 
duality of logicians that associates ‘model’ with 
‘theory’ is significant because the modelling 
relationship which it embodies has widespread, if 
sometimes vague, use. Inverting the ordinary view of 
models as abstractive representations, logicians speak 
of ‘embodiments’ or ‘interpretations’ of some 
axiomatized formal system, designated a ‘theory’, 
where there is an isomorphic relationship between its 
structure and that of its interpretation, designated a 
‘model’. The usefulness of this model, in the context 
of scientific enquiry, lies in the fact that “postulates of 
theory make existential claims, but the model serves 
merely to channel these to some confrontation with 
experimentally testable consequences” [20]. 

In the world of software engineering this definition 
of a model, embodying rather than abstracting, is that 
taken, at least in part, by all object oriented 
approaches, which take as their premises the existence 
of classes and objects and other principles. Likewise 
definition of the UML may be viewed as a complex set 
of axiomatic statements to be used as the basis for the 
interpretation of any particular domain and thus the 
creation of a model of it. Any appeal to an analogical 
basis relationship between a UML model and its 
subject (or object) is further undermined by definition 
of a model as ‘an instance of a meta-model’ [15] 
concomitant upon the model conforming to the 
principles set out in its meta-language. A full analysis 
of multi-layered approaches to programming going 
back to Dykstra [5] is outside the scope of current 
work, but it does require some discussion. 
 
 



6. Relationships of denotation or 
exemplification 
 

In order to clarify the effect of integrating models 
into a layered hierarchy, such as that to which the 
UML belongs, it is necessary to distinguish between 
denotation and exemplification. One basic type of 
model denotes, or has as an instance, what it models, 
for example the ‘ship model’ traditionally constructed 
in the greatest detail to show the finished vessel, or the 
‘mathematical model’ expressed as a formula in a 
mathematical language that applies to a state or object 
modelled. In the same manner an ‘architectural 
model’ denotes a building or buildings. Its purpose is 
essentially communicative, to provide a preliminary 
view of what is to be built once a detailed design has 
reached or is nearing completion. After actual 
construction the model provides a record of the design, 
perhaps not as finally realised, but during building it 
has no primary function in determining what actually 
rises from the ground. The model derives directly from 
architectural drawings, which themselves follow 
conventions sufficiently strict [6] for them to act in the 
same capacity as a musical ‘score’ and allowing 
multiple ‘performances’ of the same ‘work’. The 
drawings act as the essential antecedent to both 
building and model, although only the drawings also 
act as the essential precedent that dictates the 
consequent form and function of what is subsequently 
constructed. 
(3) D(x,y) Model x denotes y or has an instance y. 

Models in software engineering serve, or attempt to 
serve, the same denotational function as architectural 
drawings. Some however serve the function of 
exemplification. In the alternative basic type the roles 
are reversed; the model is an example, or an instance, 
of what it models [6], for example a ‘fashion model’ 
exemplifies the physical characteristics that the 
clothes designer hopes all wearers will have, or a 
‘compliant universe’ is the ‘model’ of a set of axioms. 
(4) E(x,v) Model x is an instance v; x is an exemplar 

of v and x complies with Rr(v) where Rr(v) are the 
rules embodying v. 

There is a common, but not binding, association 
between models that denote and models that are 
analytic and also between models that exemplify and 
models that are telic. 
 
7. Analytic or telic purpose 
 

Although all models may be analytic in some sense 
related to purpose or derivation, and all models are 

created with some end use in view, a distinction 
between specifically analytic and telic purposes is 
significant. The role of analytic models, those made as 
an aid to practical or theoretical understanding of a 
particular domain or artifact, have been widely studied 
and they have played a fundamental role in upstream 
software engineering processes. The role of telic 
models, those created specifically with an expectation 
of action and with some particular end in view, has 
been little studied because alternative and long 
developed professional conventions have been the 
means of representation. 

Most ‘concrete’ engineering models have been 
quasi-telic because of their subsidiary but specific role 
in testing. What are the characteristics of the airflow 
over a wing? At what wind speed will an electricity 
pylon fall? What strength of earthquake will a dam 
withstand? These are questions all once answered by 
physical models and now replaced by representation as 
flow algorithms or matrices of forces in ‘finite element 
models’. Architectural models (other than ones that 
are essentially initial ‘sketches’) are likewise a by-
product of the design process, which play an important 
communicative role, rather than an essential 
intermediate product in building design and 
construction. 

Telic models which only exemplify (or ‘are 
instances of’) open the way for models that are 
fabrications using solely predefined concepts. They 
form the basis for multilayer language definitions and 
the foundation for the idea of a ‘model’ is ‘an instance 
of a meta-model’ and consequently for model driven 
architectures. The MDA specification advocates, at 
least in its glossary, the most extreme version of a telic 
definition of a model as something built with a 
specific purpose or end in view : "a formal 
specification of the function, structure and/or behavior 
of an application or system" [14]. Without any of the 
important connotations of exemplification the telic 
model is the prescriptive as opposed to descriptive 
model [21], or ‘TO-BE’ rather than ‘AS-IS’ model 
[17], these pairings both being examples from studies 
outside the object-oriented context. 
 
8. Consequent of antecedent or precedent 
for consequent 
 

There is also a common, but not binding, 
association between analytic models and consequent 
models of some antecedent subject and also between 
telic models and precedent models for some 
consequent object which comes subsequently. 



Extending the formulae above and using cM for 
consequent model and pM for precedent model: 
(5) cM(S, x, y) and D(x,y) and Rp(x) < Rp(y)  
 where: 
 - Rp is the range or richness of relevant 

properties 
 - S takes x as an ‘consequent model of’ y  
 e.g. x/y: sketched data flow diagram / observed 

office activity, or architectural model / the Tower 
of London. 

(6) pM(S, x, y) and D(x,y) and Rp(x) < Rp(y)  
 where: 
 - Rp is the range or richness of relevant 

properties 
 - S takes x as an ‘precedent model of’ y  
 e.g. x/v: sculptor’s maquette / a sculpture, or 

‘keep fit’ video / someone’s exercise routine. 
Precedent models need not in general comply with 

any standard set of rules or axioms so compliance with 
Rr(v) is not demanded. 
 
9. Model, cast or mould 
 

With the advent of multi-model processes of 
development it is important to distinguish clearly 
between the traditional model, one which follows 
some antecedent and pre-existing artifact, design or 
domain (its subject), and its partner, the more recent 
model which itself defines and acts as the predecessor 
to and precedent for some consequent artifact (its 
object). To reuse a term from physical processes, this 
second type acts as a mould (Am. mold), any shape 
containing an internal void which, when filled, forms 
a ‘cast’. 

This distinction between these two types was 
implicit in the earlier definitions which separated (as 
mentioned above) descriptive and prescriptive models. 
However multi-layered model hierarchies require that 
the two types should be newly made explicit in a 
composite form. Recalling the physical ‘cast’, this can 
itself, in its own turn, act as the ‘model’ for another 
‘mould’, as it does in ‘lost wax’, the traditional multi-
stage process for metal casting. 

Any form of software engineering model with both 
object and subject requires an explicit definition of a 
complete and composite ‘mould’ (mM) relationship. 
Much confusion may arise because such a ‘mould’ in 
its making is an instance, but in its use has an 
instance. This is particularly relevant for notations 
that are conventionally employed both for consequent 
and precedent models. Explicit transformations 
between representations for the consequent and the 

precedent remain a fundamental issue in requirements 
engineering. Unless the model relationships are 
explicit the essential transformations will remain 
uncertain. 
(7) mM(S, v, x, y)  
 and D(x,y) and E(x,v) and Rp(x) < Rp(y) and x 

complies with Rr(v) 
 where: 
 - Rp is the range or richness of relevant 

properties 
 - Rr(v) are the rules embodying v 
  which may be wholly or partially defined 
 - S takes x either as a ‘model of’ both v and of y  
 or as a ‘mould of’ v (or ‘from v) and y (of ‘for y’) 
 e.g. v/x/y: UML syntax and semantics / a UML 

class diagram / segment of object code. 
The problem of switching from consequent to 

precedent model, from model to mould is implicit in 
all definitions which attempt to embrace both a system 
and the domain of which it will form part, for example 
the alternative definition of model provided in the 
body of the text of the OMG’s MDA guide: "a 
description or specification of that system and its 
environment for some certain purpose. A model is 
often presented as a combination of drawings and text. 
The text may be in a modeling language or in a 
natural language" [14]. The particular point at which 
the switch takes place and the transformations 
involved will be a crucial traceability determinant. 
 
10. Conclusions 
 

The sense in which abstract concepts or axioms 
dictate the form and content of models marked a major 
shift away from traditional and vernacular ideas of a 
physical model. Our investigations suggest that recent 
approaches to modelling in software engineering have 
been characterized by a further extension of basic 
concepts in three ways: a reorientation towards the 
telic and intention to construct, a contraction of the 
possible domain for analogy, and a merger of 
previously separate analogic and metamathematical 
approaches via the conventionalised form of 
abstraction used in metamodels. 

We conclude that a new type of composite model, 
or mould, requires recognition, both to assist 
understanding and to facilitate the tracing of elements 
through successions of models. Examination of the 
explicit relationships between models, modellers and 
what is modelled will be the basis for further work in 
the context of current requirements engineering 
research and practice. We hope that this will lead to a 



proper understanding of how traceability properties 
may be identified within, or integrated into, multi-
model processes.  
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