
From Farm to Fork or a Bite of the Unknown:
Learning from the Food Industry

O.C.Z. Gotel
Department of Computer Science

Pace University
New York

ogotel@pace.edu

S.J. Morris
Department of Computing

City University
London

sjm@soi.city.ac.uk

ABSTRACT
Establishing requirements traceability within a software
development project is a problem that has been explored,
discussed and addressed by both academics and practitioners for
many years. However, progress has been fragmentary and slow to
date, an observation that has been reflected in the release of a
recent document that attempts to articulate what the community
considers to be the “Grand Challenges in Traceability”. In other
domains, such as the food industry, traceability is frequently a
regulatory demand and routinely achieved for many of the
products that we eat. This paper examines the meaning and
provision of traceability in the food industry, at an initial and
high level, as a point of comparison through which to motivate
possible explanations for the unique difficulties of establishing
traceability in software engineering. The goal of this paper is to
encourage a closer investigation into traceability concepts and
practices from other domains, and to thereby trigger a wider
discussion about the insights and possible lessons for the
software industry.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements / Specifications.

General Terms
Management, Documentation, Theory.

Keywords
Food Traceability, Requirements Traceability, Trace,
Traceability, Traced Object, Trace Relation.

1. INTRODUCTION
A cursory examination of the software engineering literature over
the past fifteen years, and more particularly of the requirements
engineering literature, reveals that traceability is a focal area of
interest and concern for many people, resulting in a series of
workshops on the topic [20, 21, 22]. Papers over this period have
ranged from examining the needs for and the problems

associated with traceability [1, 11], to practical experiences with
establishing traceability in the field [2], to the use of information
retrieval based techniques for recovering traceability linkages
after the fact [13]. Despite significant advances in many
important areas, this community of academics and practitioners
has recognized that efforts have not yet resulted in the progress
that is desired [4].

‘Traceability’ is a term that has applicability in domains beyond
software engineering. For example within metrology, the field of
knowledge concerned with measurement, establishing
traceability necessitates making a documented case to
demonstrate that a new measurement result relates back to some
agreed national or international standard unit of measurement
“through an unbroken chain of calibrations of a measuring
system or comparisons, each contributing to the stated
measurement uncertainty” [14]. Within the food industry, the
need to know what is referred to as the backstory of a food
product is nowadays mandated to satisfy legal regulations for
food safety [5]. Popular taglines, such as “from farm to fork”,
permeate the media and reveal the necessity to render visible the
entire supply chain of a food product, from its raw source
ingredients, through production, processing and distribution [6].
Coupled with the increasing demand to either assure or certify
traceability in domains like these is the apparent ability to
achieve this quite satisfactorily in practice [10].

This paper examines traceability in the context of the food
industry and contrasts this with that of the software industry to
help suggest where some of the challenges may lie. It considers
the motivation for providing traceability, the processes typically
undertaken to accomplish it, the concepts used to characterize its
provision, the objects of traceability interest, the underlying
meaning of a trace and the nature of trace relations. The paper
suggests that in vernacular use there is a clear distinction
between literal and figurative definitions of ‘trace’, and this is a
key difference that has implications for how we need to think
about traceability and about what is achievable in these two
industries.

2. WHY TRACE?
In the food industry, traceability is predominantly driven by the
demand for food safety. Traceback and traceforward can
facilitate the recall and withdrawal of food, helping to guarantee
the sources of a food product or the quality of a processing step,
thereby eliminating any hazardous pathways [7]. The value of
traceability in the food industry therefore increases when the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TEFSE/GCT’07, March 22-23, 2007, Lexington, KY, USA.
Copyright 2007 ACM ISBN 1-59593-6017/03/07...$5.00.

health risk associated with certain foods increases and where
penalties can be incurred, though there will always be occasions
and places when consumers are ready to taste the unknown or to
simply take risks. A second driver is the fact that there are
specific claims about food that cannot be seen by simple
inspection, like organic sourcing and fair trade practices. These
need to be demonstrated via a documented record and are usually
certified by an external third party to promote consumer trust, as
per the International Federation of Organic Agricultures
Movements or the Soil Association Organic Standards.
Traceability in the food industry is therefore also required to
validate the presence or absence of attributes about food, to
differentiate products for marketing purposes and to provide for
customer reassurance. The importance of traceability here is
linked to the potential market size for products with these valued
attributes, along with the premium that customers would be
prepared to pay for them.

In theory, traceability is expected to assist with a similar set of
goals in the software industry (and is recommended as a general
principle of software validation by the same US agency requiring
food traceability [8]). It enables the determination of what parts
of a software product are impacted by a change during
development and maintenance, the demonstration of compliance
to processes and standards, and the verification that specified
requirements and properties are present in the evolving software
product. It can therefore help manage risk and demonstrate the
presence of properties too. However, providing traceability to
help recall a food product, or to pinpoint the source of a food
scare so as to replace an ingredient, is possibly a less complex
task than using it to make on-the-fly changes to evolve an in situ
product. Part of the difficulty of establishing traceability in the
software industry is the complexity of the core activity that
traceability is expected to assist with, namely managing the
multi-various changes inherent in such processes. Also, the
attributes of a food product are somewhat inherent, in that an
apple is either organic or not (if the record shows so). Those
properties pertaining to software, like reliability, also need to be
demonstrated, but just because they were demonstrated at one
point in time does not guarantee they still hold at another point
in time or within a wider compositional context. Are similar
issues not also apparent in the food industry?

3. TRACEABILITY PROCESSES
There are many parties, with well-defined roles, involved in the
whole lifecycle of any food product (e.g. sources, processors,
recipients, transporters, etc.) While there is often no end-to-end
responsibility for traceability by one party, there are some simple
and generic traceability principles that all parties need to comply
with, an example of which is specified in the Food Safety
Regulation EC178/2002 [5]. Paraphrasing this, all parties
subscribe to ‘one up / one down’ traceability [3]. This is the
agreement to maintain records about the immediate supplier and
the immediate subsequent recipient of a food product at all
points along the supply and distribution chain, but not with legal
dictate as to which method they are to use. These external
traceability links record the input and output (i.e. the immediate
origin and immediate destination information) of a product, like
the raw materials used by suppliers. Internal traceability is a

concept restricted to the transformations that take place under the
control of the party concerned, though not every party materially
alters the food product while it is under their jurisdiction. The
responsibility for through-life traceability is thus distributed and
the health of the chain is a jointly shared achievement. When
many individual food products are supplied via the same chain,
there are also economies of scale involved and supply
management quality incentives. A weak link, in the form of an
uncooperative, non-compliant or non-trusted party, means the
whole chain suffers.

Within the software industry, the responsibility for establishing
traceability is not usually distributed and shared between all
participating parties, but tends to be the responsibility of a few
(if any). Short of following a rigid waterfall process model, the
delineation of the input and output to developmental activities is
not as clear cut as in the food lifecycle, so responsibility can
become blurred when developing a software product with on-
going feedback and iteration. A lack of simple protocols and
agreements further makes it difficult to trace across functional
disciplines and organizational boundaries. In addition, with an
individual software product, there are rarely the same economies
of scale and shared risks to reputation or finances motivating the
perfection of the chain, unless software process improvement and
associated certification is a primary goal of all parties. The
question of who does the traceability and who benefits has long
been asked, along with debate about return on investment,
leading to research on the automated recovery of traces. The
alternative is, theoretically of course, the automatic generation of
traces as a by-product of software development processes. Could
the distributed management of traces, according to a simple
process as per the food industry, become a viable proposition in
the future?

4. TRACEABILITY CONCEPTS
While the basic principle of ‘one up / one down’ traceability
applies in the food industry, there are factors that influence the
amount of work that needs to be done on a case-by-case basis [9]:

Depth – How far back or how far forward to trace in the lifecycle
of food. As the depth increases, traceability becomes more
difficult and uncertainty grows, especially with the more complex
transformations a product undergoes.

Breadth – The amount of information recorded about a product
(i.e. the number of attributes or amount of meta-data). As the
breadth increases, the harder it becomes to manage traceability.

Precision – The level of detail (i.e. granularity) recorded about
individual attributes. The greater the precision, the higher the
overhead and the more difficult the traceability is to manage.

The cost of doing traceability in the food industry is clearly
correlated with decisions about the required interplay between
depth, breadth and precision. Finding the right balance for these
three dimensions for any one product depends on the value that
traceability is seen to add and this will vary according to risk and
attribute premium, as explained in Section 2. For example, is it
cost-effective to maintain the ability to trace the pieces of an
apple in an apple pie back to the source tree or would back to the
orchard, grower or region suffice? Is it commensurate with the

risk to shut down an entire industry if one product or processing
step is found wanting? If the concern is to certify the apple as
organic, does information need to be maintained about orchard
fertilizers and the ‘picked-from-the-tree’ date? The costs of
traceability cannot be divorced from the record-keeping tasks it
relies upon and the benefits cannot be ascertained without clearly
stated goals.

In the software industry, there have been a few attempts to clarify
the dimensions of requirements engineering [18]. Traceability is
also required to help achieve specific goals and can obviously be
achieved at many levels. A similar simple language may be
useful for articulating the required traceability dimensions a
priori:

Depth – Is it necessary to trace back to and from source
documents or is the need simply to link requirements to design?

Breadth – Does associated rationale or costing information need
to be traceable for all or for some subset of the requirements?

Precision – If so, should the required rationale information take
the form of a one-line explanatory sentence or should it be an
intricate form of structured argumentation?

5. TRACED OBJECTS
This paper differentiates between three terms in an attempt to
clarify the objects of traceability interest within the two domains:

i) The ‘traced (or ‘to-be-traced’) object’, the material object or
abstract entity whose path has been, or must be, traced or
tracked (e.g. the animal in the wild moving across terrain or
a specific functional requirement). This is the primary
object of traceability interest and no assumption can be
made a priori that the object is in fact traceable.

ii) The ‘trace’, the marks left behind, if any (e.g. the track on
soft ground or apparent implementation of a requirement).

iii) The ‘trace’, or more specifically the ‘trace record’,
somehow generated specifically for its own sake (e.g. a
plaster cast of a paw print or the documentary record of the
transformation of a requirement into a specific downstream
component).

A traced (or to-be-traced) object is called a ‘lot’ in the food
industry. A lot can refer to either an individual piece or a batch
(i.e. a collection or composite of pieces). They are tangible and
visible materials, namely food stuffs. Attached to the physical
object is information about both it and the processes involved in

its creation, processing and distribution. It is obviously much
easier to attach this meta-data directly to the physical object if it
is in a form that can be directly labeled (e.g. an apple with a
grower’s sticker) or if it is packaged (e.g. a boxed apple pie with
a bar code). In this way, there is no physical separation between
the object and the meta-data maintained about it. Together they
form the more encompassing trace record which is also to-be-
traced.

The unusual, and most challenging aspect of traceability of any
component that forms part of a software development process, is
the indirect, non-physical and intangible nature of many to-be-
traced objects. This problem is implicit in the fact that the
process always involves representations of some form rather than
physical objects, and these representations themselves seldom
share a common origin or form. This distinction has implications
that are explored in later sections and is illustrated in Figure 1
below.

6. WHAT EXACTLY IS A TRACE?
The online version of the Oxford English Dictionary shows at
least three dozen different definitions for the term ‘trace’ [16].
The most common literal definitions of ‘trace’ include:

a) “Vestiges or marks remaining and indicating the former
presence, existence, or action of something.”

b) “An indication of the presence of a minute amount of some
constituent in a compound; a quantity so minute as to be
inferred but not actually measured.”

c) “The detailed examination of the execution of a program or
part of one with the aid of another program that can cause
individual instructions, operands, and results to be printed
or displayed as they are reached by the first program.”

What is common to these definitions is that such ‘traces’ exist by
virtue of direct evidence or documentation: a) a paw print; b)
wetness on the ground after rain; or c) a series of recorded
values.

The food industry is interested in a chain in which a to-be-traced
[(i)] object is identified as a component at a particular stage and
then as a ‘trace’ [(ii) or (b)] in the next stage because it survives
in a new form as a result of some type of transformation (or
perhaps in a completely unaltered form but altered in external
appearance by a wrapper, or simply by location when shipped
from a factory to a warehouse). That ‘trace’ [(ii)] then itself
becomes a new to-be-traced [(i)] object, and so on. This chain-

Figure 1. The nature of the to-be-traced object in the two domains.

Trace Record in the Food Industry Trace Record in the Software Industry

Traced object
(physical)

LABEL Meta-data
(information held in

physical and possibly
digital form)

ID Requirement Priority Source etc.
1 The system shall… High OG …

Traced object (information held in digital
and possibly physical form)

Meta-data (information held in digital
and possibly physical form)

Trace Record in the Food Industry Trace Record in the Software Industry

Traced object
(physical)

LABEL Meta-data
(information held in

physical and possibly
digital form)

ID Requirement Priority Source etc.
1 The system shall… High OG …

Traced object (information held in digital
and possibly physical form)

Meta-data (information held in digital
and possibly physical form)

like explanation is, of course, clear when dealing with physical
objects with known and controllable, or at least understood,
possibilities for composition and decomposition.

In software development, all evidence post initial requirements
elicitation may be indirect and so non-specific compared with
some original documented requirement that the most appropriate
definition of ‘trace’ becomes figurative:

d) “A non-material indication or evidence of the presence or
existence of something, or of a former event or condition.”

It is in this sense [(d)] that we talk about an idea 'disappearing
without trace' or 'traces of ancestry'. In the absence of clear marks
of its passing, any trace of a requirement can only be figurative.
The key distinction is that no part of the antecedent exists in the
consequent as there is no physical continuity of materials. This
figurative use is common when 'track' is a verb:

e) “To follow the course, development or history of.”

The definition [(d)] appears to apply to the to-be-traced object of
software and to the meta-data about the objects under trace in
both domains. Tracking and tracing become close to synonymous
when using ‘trace’ in a literal sense, hence an alternative
common definition of 'to trace':

f) “To follow the footprints or traces of; especially to track by
the footprints.”

Tracing ideas, concepts, even knowledge, is possible both
literally and figuratively, although more likely the latter given
the difficulty of demonstrating unequivocally that a mental mark
has been made. A requirement ‘trace’, in its literal sense,
demands not only a detailed explanation of the intermediate and
final affects of the requirement but also a full record of all marks
that it left at every transformation between documents and
media. Any meaning for traceability in software development
will remain essentially figurative until the potential
transformations, and the associated relationships between to-be-
traced objects, are understood and defined in a useable way [12].

7. TRACE RELATIONS
In the lifecycle of food, there are two basic types of trace relation,
and these derive from the literal and figurative definitions of
‘trace’ that apply to it. The first type of relation is between the
food product in some state X and the product in some state Y.
This is necessarily a temporal linkage. Although temporal, it may
be possible to reclaim the product in the original state X if it is
preserved in its entirety in state Y (e.g. when an apple is merely
packaged); the transformation is reversible if it is possible to
recover the original apple by removing the packaging and then
re-packaging it in a new way, though this is still effectively a
forward step in time leading to a new state Z. Where the product
in state X is materially altered in some way from state X to state
Y (e.g. when an apple is used as an ingredient in an apple pie),
then this transformation is non-reversible; it is not usually
feasible to reconstitute the original apple and then reuse it in a
different way. With this temporal relation there is always a
detectable amount of the original food product across the two
states. This provides for material continuity and a physical flow
or path is apparent.

The second type of trace relation is concerned with the
corresponding linkage that is formed between the two separate
clusters of meta-data that are associated with the food product in
its two states. This linkage is not subject to the same temporal
constraints and is thus bi-directional; it is possible to read about
the previous or subsequent contextual information at any point in
time, and change it if desired, irrespective of whether or not it is
possible to reclaim and make changes to the product item itself.
This provides for an informational flow or conceptual path that is
somewhat grounded in the physical one.

In the lifecycle of software, when a requirement description X is
associated with another artifact Y in which the requirement may
have been decomposed, refined, elaborated, evolved, explained,
satisfied (or whatever link semantics are deemed relevant [19]),
both X and Y still exist in their original states and have
continued use or relevancy. The relation that is made is purely
informational, as in the second type of trace relation above. It has
nothing to do with material continuity across two states, but with
people’s perceptions of a connection between descriptions. It
inter-relates two items that have unique identifiers in a way that
seems to make sense to some person (or persons) at some
moment in time and for some purpose. The ‘trace’ [(ii)] in the
software world is formed by way of a plausible explanation that
is made to bridge an inevitable gap between two different (or
same) [(i)]’s. The implications are that there will not be a smooth
transformation between traced objects as in the food industry
because there is no physically continuous chain to hook into.

8. IF YOU JOIN THE DOTS…
Unlike the food lifecycle, the software lifecycle is characterized
by a series of information points (e.g. requirements, design, code,
etc.) that are first created and then jumped between, in such a
way as to provide a reasonable explanation as to continuity. The
expectation is that others can follow or reverse the path through
the dots using the very same explanations and obtain an identical
image. Traceability is a quality associated with movement and
change, in time, space or form. In stasis it is merely inherent and
becomes manifest only as a consequence of some action. This
quality is acquired as a consequence of leaving some mark of
passing presence, or because of the recognized potential so to do.
Requirements are normally deemed to possess this quality only
by virtue of this potential, always desired by their originators but
never automatically realized without the intervention of others.
Post elicitation much of requirements engineering concerns the
nature of this intervention and its timing within the development
process. The only alternative to this interventionalist, and
essentially passive, approach is one based on ensuring that
recognized marks, traces of presence, are made automatically and
unavoidably, just as animals imprint snow or as they may be
tagged in food industry processes.

9. TAKING A QUANTUM LEAP
"We tend to think of these spacetime histories as 'possible
alternative classical trajectories' (in configuration space). The
idea is that in the quantum world, instead of there being just one
classical 'reality', represented by one such trajectory (one history),
there is a great complex superposition of all these 'alternative
realities' (superposed alternative histories)." [17]

In lay terms, ‘superposition’ means that an object possesses two
or more values for some property at the same time (e.g. two
positions in space or two points in time). In the food lifecycle,
traced objects are only ever perceived to be in one state at any
one time as the product moves forward linearly in normal time
towards eventual consumption. It is not possible to go back to the
past and recreate a new future state of an existing food product,
except perhaps for the simplest of transformational steps, like
packaging and un-packaging an apple pie. With the software
lifecycle, the to-be-traced objects can be considered descriptions
that together form an evolving model of the software to be built,
at different levels of abstraction and from different viewpoints
(following the position of [15]). It is therefore quite possible for
any one to-be-traced object to exist in multiple states at any one
time (i.e. at different levels of abstraction or within different
models constructed from different viewpoints or embodying
different components of the system). The necessity to be able to
make a change to a requirement (obtained from the past) and
propagate this forward to an existing design to change the
present or future software product may mean that the traceability
of software requirements is as straightforward as time travel!

The classic view of software development as producing a series
of discrete information points representing an evolving model
that we seek to establish a traceable path through may not only
be limiting but may be flat-lining projects. In lay terms, the
Copenhagen Interpretation states that a system stops being a
superposition of states and becomes reduced to one or the other
when an observation occurs [17]. In the software context, this
would be each time a to-be-traced object is constructed and a
trace relation is made between two such objects, both reliant on
the knowledge of those performing the actions (see Figure 2). As
with Newtonian physics and quantum physics, there are some
things that cannot be explained or understood when restricted to
the current way of thinking. Perhaps the analogy with quantum
mechanics, well beyond the scope of this paper and utterly
speculative, could yield some insight and trigger discussion into
the complexity surrounding the tracing of abstract to-be-traced
objects?

10. CONCLUSIONS
This paper suggests that there may be value in re-considering
traceability at a more fundamental level, re-examining the nature
of ‘traced’ or ‘to-be-traced’ objects, understanding what a ‘trace’

really is and determining what traceability actually means in the

world of software. While perceived as costly and unattainable,
there is really no clear explanation as to why this may be so. The
paper proposes that there are lessons and insights that can be
learned by looking at traceability in other domains. The food
industry comparison makes for an appealing and tentative first
contrast as it highlights why the traceability of requirements in
software development may be harder than initially appears. It has
highlighted an important distinction between 'literal trace' and
'figurative trace' that seems to have potential as a structure for
thinking about what needs to be done. Are software to-be-traced
objects actually traceable and so capable of being traced in a
literal sense without physical counterpart? Can the trace relations
ever be truly smooth, as in the food industry, or even bi-
directional when people’s knowledge is what bridges the
information gap?

Furthermore, traceability itself needs to be re-conceptualized as a
measure of the potential for an object to be traced, making
traceability specifically a quality or property of a to-be-traced
object rather than an activity associated with the tracing or
tracking process and stripped of any connotations thereof. Such
objects may, by their nature, afford easy physical traces or may,
by virtue of what affects them, leave little discernable impression
on their environment. The activity of tracing is what
requirements engineers or software engineers have to do, i.e. the
physical tracking (creation of a ‘trace record’) of objects probably
without intrinsic physical substance, only physical
representation. Alternatively, or additionally, they have to render
such objects more easily trackable (i.e. improve their traceability
qualities either by some direct equivalent of physical tagging or
better process understanding). Just as it is possible to measure
software properties like reliability using a probability
distribution and study its growth and decay over time, perhaps it
makes sense to measure traceability growth and decay? This
would permit the ‘goodness’ of the traceability to be measured
with respect to some overarching traceability goal rather than
leaving it as a poorly digestible and typically unknown mouthful.

11. ACKNOWLEDGEMENTS
We would like to thank the GCT’07 reviewers for their helpful
pointers and constructive comments, including the reference to
[8].

Figure 2. Are software to-be-traced objects continuous waveforms as well as discrete points? (Intentionally speculative!)

Trajectory of a Food Product:
Linking discrete physical points “from

farm to fork” via material flow

Trajectory of a Software Product:
Jumping discrete information points via knowledge

(information flow) and/or selecting and linking points from
along continuous waves of information

time

One possible observation of p1, p2 and p3 taken at time
t, and the plausible relation constructed between them

p1 p2

p1

p2

p3

p3 pn

Trajectory of a Food Product:
Linking discrete physical points “from

farm to fork” via material flow

Trajectory of a Software Product:
Jumping discrete information points via knowledge

(information flow) and/or selecting and linking points from
along continuous waves of information

time

One possible observation of p1, p2 and p3 taken at time
t, and the plausible relation constructed between them

p1 p2

p1

p2

p3

p3 pn

12. REFERENCES
[1] Arkley, P. and Riddle, S. Overcoming the Traceability

Benefit Problem. Proc. 13th IEEE International
Requirements Engineering Conference, IEEE Computer
Society Press, Paris, France (August-September 2005),
pp.385-389.

[2] Aubrey, D. Controlling the HMS Program through
Managing Requirements. Proc. 14th IEEE International
Requirements Engineering Conference, IEEE Computer
Society Press, Minneapolis/St. Paul, MN (September 2006),
pp.222-227.

[3] Byrne, D. The Regulation of Food Safety and the Use of
Traceability/Tracing in the EU and USA: Convergence or
Divergence? Food Safety Conference, Washington, DC, 19th
March, 2004. (Available from 2004 Speeches and Press
Conferences, European Union: Delegation of the European
Commission to the USA.)

[4] Cleland Huang, J., Dekhtyar, A. and Huffman Hayes, J.
(Eds.) Grand Challenges in Traceability. Center of
Excellence for Traceability Technical Report COET-GCT-
06-01, University of Kentucky, September 2006.

[5] The European Parliament and the Council of the European
Union. Regulation (EC) No 178/2002 of the European
Parliament and of the Council of 28 January 2002. Section
15, 28, 29 and Article 18, Official Journal of the European
Communities.

[6] European Commission. From farm to fork: Safe food for
Europe’s consumers. Europe on the Move Series,
Luxembourg: Office for Official Publications of the
European Communities, 2004 (ISBN 92-894-7772-5).

[7] Food and Drug Administration, U.S. Department of
Agriculture Centers for Disease Control and Prevention.
Guide to Minimize Microbial Food Safety Hazards for
Fresh Fruits and Vegetables. IX: ‘Traceback’, October 26th,
1998.

[8] Food and Drug Administration, U.S. Department Of Health
and Human Services, Center for Devices and Radiological
Health, Center for Biologics Evaluation and Research.
General Principles of Software Validation; Final Guidance
for Industry and FDA Staff. January 11th, 2002.

[9] Golan, E., Krissoff, B. and Kuchler, F. Food Traceability:
One Ingredient in a Safe and Efficient Food Supply. Amber
Waves: The Economics of Food, Farming, Natural
Resources, and Rural America, U.S. Department of
Agriculture, Economic Research Service, April 2004.

[10] Golan, E., Krissoff, B., Kuchler, F., Calvin, L., Nelson, K.
and Price, G. Traceability in the U.S. Food Supply:
Economic Theory and Industry Studies. AER-830, U.S.
Department of Agriculture/ Economic Research Service,
March 2004.

[11] Gotel, O.C.Z. and Finkelstein, A.C.W. An Analysis of the
Requirements Traceability Problem. Proc. 1st IEEE
International Conference on Requirements Engineering,
IEEE Computer Society Press, Colorado Springs, CO (April
1994), pp.94-101.

[12] Gotel, O.C.Z. and Morris, S.J. Crafting the Requirements
Record with the Informed Use of Media. Proc. 1st
International Workshop on Multimedia Requirements
Engineering (with 14th IEEE International Requirements
Engineering Conference), Minneapolis/St. Paul, MN,
September 12th, 2006.

[13] Huffman Hayes, J., Dekhtyar, A. and Osborne, J. Improving
Requirements Tracing via Information Retrieval. Proc. 11th
IEEE International Requirements Engineering Conference,
IEEE Computer Society Press, Monterey, CA (September
2003), pp.138-147.

[14] International Organization for Standardization. International
Vocabulary of Basic and General Terms in Metrology
(VIM). ISO VIM (DGUIDE 99999), Definition 2.24 (6.10)
‘metrological traceability’, revision of 1993 edition, 2004.

[15] Jackson, M.A. The General and the Particular. Challenges
and Strategies for Research in Systems Development:
Papers from a Conference held at Georgia State University,
November 1988; Cotterman, W. W. and Senn, J. A. (Eds.),
John Wiley & Sons, 1992, pp.33-40.

[16] The Oxford English Dictionary. Online Version, Oxford
University Press, http://www.oed.com (accessed January
2007).

[17] Penrose, R. The Road to Reality. London: Cape, 2004, p.667
and p.783.

[18] Pohl, K. Process-Centered Requirements Engineering. RSP,
Somerset, U.K. (John Wiley & Sons, Ltd., U.K.), 1996.

[19] Ramesh, B. and Jarke, M. Toward Reference Models for
Requirements Traceability. IEEE Transactions on Software
Engineering, 27, 1 (January 2001), pp.58-93.

[20] TEFSE 2002. Proceedings of 1st International Workshop on
Traceability in Emerging Forms of Software Engineering
(with 17th IEEE International Conference on Automated
Software Engineering), Edinburgh, U.K., September 28th,
2002.

[21] TEFSE 2003. Proc. 2nd International Workshop on
Traceability in Emerging Forms of Software Engineering
(with 18th IEEE International Conference on Automated
Software Engineering), Montreal, Canada, October 7th,
2003.

[22] TEFSE 2005. Proc. 3rd International Workshop on
Traceability in Emerging Forms of Software Engineering
(with 20th IEEE International Conference on Automated
Software Engineering), Long Beach, CA, November 8th,
2005.

